
High Level Design Proof of a Reliable Computing Platform1Ben L. Di VitoVigyan, Inc.30 Research DriveHampton, VA 23666-1325 Ricky W. ButlerJames L. CaldwellNASA Langley Research CenterHampton, VA 23665{5225AbstractAn architecture for fault-tolerant computing is for-malized and shown to satisfy a key correctness prop-erty. The reliable computing platform uses replicatedprocessors and majority voting to achieve fault toler-ance. Under the assumption of a majority of proces-sors working in each frame, we show that the repli-cated system computes the same results as a singleprocessor system not subject to failures. Su�cientconditions are obtained to establish that the repli-cated system recovers from transient faults withina bounded amount of time. Three di�erent vot-ing schemes are examined and proved to satisfy thebounded recovery time conditions.Key Words { Fault tolerance, formal methods,correctness proofs, majority voting, modular redun-dancy.1 IntroductionNASA has initiated a major research e�ort towardsthe development of a practical validation and veri-�cation methodology for digital
y-by-wire controlsystems. Researchers at NASA Langley ResearchCenter (LaRC) are exploring formal veri�cation asa candidate technology for the elimination of designerrors in such systems. In a detailed technical re-port [1], we put forward a high level architecture fora reliable computing platform (RCP) based on fault-tolerant computing principles. This paper presentsinitial results of applying formal methods to the ver-i�cation of a fault-tolerant operating system thatschedules and executes the application tasks of a dig-ital
ight control system.The major goal of this work is to produce a ver-i�ed real-time computing platform, both hardwareand operating system software, which is useful fora wide variety of control-system applications. To-1Second International Working Conference on DependableComputing for Critical Applications. Tucson, Arizona, USA.February 18-20, 1991.

ward this goal, the operating system provides a userinterface that \hides" the implementation details ofthe system such as the redundant processors, voting,clock synchronization, etc. We describe an abstractmodel of the architecture, a �rst level decompositionof the model towards a physical realization, and aproof sketch that the decomposition is an implemen-tation of the model.2 Design of the Reliable Com-puting PlatformTraditionally, the operating system function in
ightcontrol systems has been implemented as an execu-tive (or main program) that invokes subroutines im-plementing the application tasks. For ultra-reliablesystems, the additional responsibility of providingfault tolerance makes this approach untenable. Wepropose an operating system that provides the appli-cations software developer a reliable mechanism fordispatching periodic tasks on a fault-tolerant com-puting base that appears to him as a single ultra-reliable processor.Our system design objective is to minimize theamount of experimental testing required and maxi-mize our ability to reason mathematically about cor-rectness. The following design decisions have beenmade toward that end:� the system is non-recon�gurable� the system is frame-synchronous� the scheduling is static, non-preemptive� internal voting is used to recover the state of aprocessor a�ected by a transient faultA four-level hierarchical decomposition of the reli-able computing platform is shown in �gure 1.The top level of the hierarchy describes the oper-ating system as a function that sequentially invokesapplication tasks. This view of the operating systemwill be referred to as the uniprocessor model, whichis formalized as a state transition system in section 5and forms the basis of the speci�cation for the RCP.124

Uniprocessor ModeljFault-tolerant Synchronous Replicated ModeljFault-tolerant Asynchronous Replicated ModeljHardware/Software ImplementationFigure 1: Hierarchical Speci�cation of the Re-liable Computing Platform.Fault tolerance is achieved by voting results com-puted by the replicated processors operating on thesame inputs. Interactive consistency checks on sen-sor inputs and voting actuator outputs requires syn-chronization of the replicated processors. The secondlevel in the hierarchy describes the operating systemas a synchronous system where each replicated pro-cessor executes the same application tasks. The exis-tence of a global time base, an interactive consistencymechanism and a reliable voting mechanism are as-sumed at this level. The formal details of the model,speci�ed as a state transition system, are describedin section 6.At the third level, the assumptions of the syn-chronous model must be discharged. Rushby and vonHenke [11] report on the formal veri�cation of Lam-port and Melliar-Smith's [6] interactive-convergenceclock synchronization algorithm. This algorithmcan serve as a foundation for the implementationof the replicated system as a collection of asyn-chronously operating processors. Elaboration of theasynchronous layer design will be carried out inPhase 2 of our research e�ort.Final realization of the reliable computing plat-form is the subject of the Phase 3 e�ort. The researchactivity will culminate in a detailed design and pro-totype implementation. Figure 2 depicts the generichardware architecture assumed for implementing thereplicated system. Single-source sensor inputs aredistributed by special purpose hardware executing aByzantine agreement algorithm. Replicated actua-tor outputs are all delivered in parallel to the actua-tors, where force-sum voting occurs. Interprocessorcommunication links allow replicated processors toexchange and vote on the results of task computa-tions.

. . . ??
?Interactive ConsistencyDistribution Network. . .InterprocessorCommunication LinkInterprocessorCommunication Link ProcessorReplicateRProcessorReplicate1 Actuators

Sensors
Figure 2: Generic hardware architecture.3 Previous E�ortsMany techniques for implementing fault-tolerancethrough redundancy have been developed over thepast decade, e.g. SIFT [2], FTMP [3], FTP [5],MAFT [12], and MARS [4]. An often overlookedbut signi�cant factor in the development processis the approach to system veri�cation. In SIFTand MAFT, serious consideration was given to theneed to mathematically reason about the system. InFTMP and FTP, the veri�cation concept was almostexclusively testing.Among previous e�orts, only the SIFT project at-tempted to use formal methods [9]. Although theSIFT operating system was never completely veri�ed[10], the concept of Byzantine Generals algorithmswas developed [7] as was the �rst fault-tolerant clocksynchronization algorithm with a mathematical per-formance proof [6]. Other theoretical investigationshave also addressed the problems of replicated sys-tems [8].4 Application De�nitionWe present a method for specifying an operatingsystem workload that characterizes the interface be-tween the application software and the operating sys-tem. The speci�cation consists of a generic set ofmathematical de�nitions serving as a schema. Foran actual application, these de�nitions would be in-stantiated with appropriate values.125

4.1 TasksLet T1; . . . ; TK be the application tasks. Assumeeach task produces either actuator output or datavalues drawn from some domain. These data valuesmay be provided as inputs to other tasks or serveas long term state variables. Tasks have no persis-tent state variables; the e�ect of persistent state isachieved by recirculating task outputs.Let S1; . . . ; Sp be the sensors and A1; . . . ; Aq bethe actuators. Let these symbols also stand for thesets of values received from the sensors and sent tothe actuators. Also let Di be the set of data valuesproduced as output by task Ti. These values maybe structured objects such as arrays, records, etc.Thus, if Ti is an actuator task, Di = Aj for somej. Note that this precludes an actuator task fromproducing non-actuator data in addition to actuatoroutput. Let D = SiDi.Task Ti computes a function fi on a set of inputvalues. Inputs may be taken from sensor data or theoutputs of other tasks. Tasks are prohibited fromhaving side e�ects; their only e�ects are their explicitoutputs.4.2 SchedulesApplication tasks are scheduled via a �xed, deter-ministic sequence of task executions. A complete,repeating task schedule comprises a cycle.::: Cyclei�1 Cyclei Cyclei+1 :::Cycles are repeated inde�nitely and the task exe-cution sequence of one cycle is identical to the others.A cycle is divided into M frames of equal duration.Frame0 ::: F rameM�1j � � �� Cycle ��� �! jThe frame length is a fundamental unit of timefor the application (typically � 50 ms). The sensorsare read at most once per frame and actuators arewritten at most once per frame. Each frame is di-vided into subframes of variable length. The numberof subframes is variable also.Subframe1 ::: SubframeMi ====j � �� �� � Framei � �� �� �! jThe number of subframes for the ith frame is givenbyMi (distinct fromM , the number of frames). Thetime from the end of the last subframe until the endof the frame is slack time for performing OS overhead

... |||10M-1 T6 T5T2T4T4T1 T1T3T2 T7T1T1Figure 3: Structure of a task schedule.functions and dispatching pre-emptable, non-criticaltasks.The schedule for an entire cycle would assign taskexecutions to each subframe (�gure 3). We refer toeach site in a task schedule as a cell. A cell is denotedby the pair (i; j) for the ith frame and jth subframe.A schedule is then given by a mapping from cells intothe scheduled task:ST : f0::M � 1g � nat! f0::KgST (i; j) gives the task index of the scheduled task forcell (i; j), and 0 for j > Mi (nat denotes the naturalnumbers).Now consider the binding of input values for taskexecution. For task Ti, we must supply inputs forthe arguments of fi. Each input must come froma prior task execution or be taken as sensor input.So the designation of a task input will be a triple(i type; i; j) where i type 2 fsensor; cellg with themeaning:sensor value from sensor i in currentframecell value from task output in cell(i; j) of current or previous cycleA task may get input from a prior task outputup to one cycle length in the past (M frames). Byconvention, if the task in cell (k; l) receives inputfrom the task in cell (i; j) wherei > k _ (i = k ^ j � l)then the input comes from (i; j)'s task execution dur-ing the previous cycle.A mapping from cells into sequences of triples de-�nes the assignment of input values to task execu-tions.TI : f0::M � 1g � nat! sequence(triple)126

TI(i; j) = [(t1; i1; j1); :::; (tn; in; jn)]for a task with n inputs. Let TI(i; j) = [] whenj > Mi or the task at (i; j) has no inputs.The functions ST and TI need to be supplementedby a binding of task outputs to actuators for \actu-ator" tasks:AO : f0::M � 1g � nat! f0::qgAO(i; j) = a to designate that the output of thetask at cell (i; j) should go to actuator a. As before,AO(i; j) = 0 if j > Mi or the task at (i; j) does notproduce actuator output.Provided the functions TI and AO satisfy certainwell-formedness constraints, they su�ce to uniquelycharacterize a task schedule. AO may not allow mul-tiple outputs to the same actuator within a singleframe.Since task results may be carried forward from onecycle to the next, it is necessary to account for the\previous" cycle at system initialization. The ap-plication must de�ne what these previous-cycle taskoutputs should be for the �rst cycle to use as suitabletask inputs. A functionIR : f0::M � 1g � nat! Dis used to characterize the initial task results values.5 Top Level Speci�cationThe top level OS machine speci�cation captures thebehavior of the application tasks running on an idealcomputer. It de�nes the net e�ect of task executionas seen by the control application. All details of thereplicated system implementation are hidden.5.1 OS State and I/O TypesThe state of the ideal OS consists of a frame counterand task outputs produced in the current and previ-ous cycle. Thus an OS state is a pair:OS state = (frame : f0::M � 1g;results : cycle state)where cycle state : f0::M � 1g � nat! D:OS:frame denotes the frame counter whileOS:results(i; j) denotes the task output at cell (i; j)during the current or previous cycle.The application de�nition needs to provide the ini-tial state values for the results portion of the state.The initial OS state is given by the pair (0; IR),where IR de�nes the initial results state values.The following data types represent vectors of sen-sor inputs and actuator outputs.

Sin = vector([1::p]) of Si SiAout = vector([1::q]) of SiAi5.2 State Transition De�nitionsTransitions correspond to the execution of tasks fora single frame. The state variable OS:frame givesthe number of the frame to be executed by the nexttransition. After the M th state transition of the cur-rent cycle, OS:frame is reset to 0. After the ith statetransition of the current cycle, OS:results(i; j) con-tain the results of the latest task executions. Latercells of OS:results still contain the results of theprior cycle's task executions.Since the frame number is incremented by one,with a wrap-around when it reaches M , we use theshorthand notation de�ned as follows.x� y = (x+ y) modMx	 y = (x+M � y) modMThe function OS de�nes the state transition.OS : Sin �OS state! OS stateOS(s; u) = (u:frame�1; �i; j: new results(s; u; i; j))The result of the function is a pair (f; r) containingthe new frame counter and results state. The subor-dinate function new results is de�ned below.new results(s; u; i; j) = if i = u:framethen exec(s; u; i; j)else u:results(i; j)To refer to the execution of tasks within the cur-rent frame, the function exec(s; u; i; j) gives the re-sult of executing the task in the ith frame and jthsubframe, i.e., at cell (i; j) in the schedule. Becausethe tasks in a frame may use the outputs of priortasks within the same frame, which are computed inthis frame rather than found in the result state, thede�nition involves recursion through the task sched-ule. Details can be found in [1].5.3 Actuator OutputSince actuator outputs are always taken from taskoutputs, which are recorded as part of the OS state,we �nd it convenient to de�ne actuator outputs asa function only of the OS state, as in a \Moore"style state machine. To cast actuator outputs into afunctional framework, we must account for the caseof an actuator not being sent an output value in agiven frame. We assume an actuator may be sentcommands as needed by the application, which may127

choose not to sent output during some frames. Letus denote by the symbol � the null actuator out-put, i.e., an output value � indicates the absence ofanything to send to the actuator. Then we de�neactuator outputs as a function of the OS state usingthe function UA.UA(u) = [qk=1 Act(u; k)]We use the notation [mi=1 ai] to mean [a1; . . . ; am].The function Act is used to de�ne the output foreach individual actuator.Act(u; k) = 8<: u:results(u:frame 	 1; j)if 9j : AO(u:frame 	 1; j) = k� otherwiseBecause of the application restriction that at mostone task output may be assigned to an actuator, theaxiomabove leads to a well-de�ned result. The framecount is decremented by one because UA is appliedto the new state after a transition, where the framecount has already been incremented.6 Second Level Speci�cationThe replicated OS machine speci�cation representsthe behavior of the OS and application tasks run-ning on a redundant system of synchronized, inde-pendent processors with a mechanism for voting onintermediate states. Let R be the number of redun-dant processors. We use f1; . . . ; Rg as processor IDs.Each processor runs a copy of the OS and the appli-cation tasks. The uniprocessor OS state is replicatedR times and this composite state forms the repli-cated OS state. Transitions for the replicated OScause each individual OS state to be updated, al-though not in exactly the same way because someprocessors may be faulty.6.1 Faulty ProcessorsThe possibility of processors becoming faulty re-quires a means of modeling the condition for speci�-cation purposes. We adopt a worst case fault model.In each frame, a processor and its associated hard-ware is either faulty or not. A fault status vector isintroduced to condition speci�cation expressions onthe possibility of faulty processors.Voting intermediate results is the way a previ-ously faulty processor recovers valid state informa-tion. The voting pattern determines which portionsof the state should be voted on each frame. A statevariable that is voted will be replaced with the voted

value regardless of what its current value is in mem-ory. We will vote the frame counter on every frameand hence, will not include it in the voting patternde�nition.Let the predicate V P represent the voting pattern.V P : f0::M � 1g � nat � f0::M � 1g ! fT; FgV P (i; j; n) = T i� we are to vote OS:results(i; j)during frame n.Since processors may be faulty and the values oftheir state variables may be indeterminate, we in-troduce a special bottom data object to denote ques-tionable or unknown data values. The symbol \?" isused for this purpose. We regard it as a special dataobject distinct from known \good" objects. This us-age is intended to model the presence of potentiallyerroneous data.Voting is the primary application for ?. We usethe functionmaj : sequence(D [f?g)! D [f?gto denote the majority computation. It takes a se-quence of data objects of type D and produces aresult of type D. If a majority does not exist, thenmaj(S) = ?; otherwise, maj(S) returns the valuewithin S that occurs more than jSj=2 times.6.2 The Replicated StateThe replicated OS state is formed as a vector ofuniprocessor OS states:Repl state = vector([1::R]) of OS stateThus, if r is a Repl state value, then r[k] refers tothe OS state for the kth processor. The OS statede�nition is identical to that of the top level OSspeci�cation. The state variable r[k]:frame givesthe number of the frame to be executed by the nexttransition within processor k. To refer to a resultselement of a replicated OS state we use the notationr[k]:results(i; j).The initial state of the replicated OS is formed bymerely copying the uniprocessor initial state R times.Thus, we have:Initial Repl state = [Rk=1 (0; IR)]where IR denotes the initial results state values asprovided in the application task de�nitions.Inputs to the replicated processors come from thesame sensors as in the uniprocessor case. The act ofdistributing sensor values via some kind of interac-tive consistency algorithm is assumed to produce R128

values to present to the replicated system. There-fore, we introduce a vectorized data type to use forinput variables in the functions below.ICin = vector([1::R]) of SinThus, if c is an ICin value, then c[k] refers to thesensor inputs for the kth processor.6.3 Replicated System TransitionsTransitions correspond to the execution of all tasks ina single frame for all replicates. Since the replicatedOS state is a vector of uniprocessor OS states, wecan �rst decompose the Repl state transition into Rseparate cases.Repl : ICin�Repl state�fault status! Repl stateRepl(c; r;�) = [Rk=1 RT (c; r; k;�)]RT is the function used to de�ne the OS state tran-sition for each replicate.The additional argument � is used to supply as-sumptions about the current fault status of the repli-cated processors.fault status = vector([1::R]) of fT; Fg�[k] is true when processor k is faulty during thecurrent frame. Various speci�cation functions take� arguments as a way to model assumptions aboutfault behavior and show what the system response isunder those assumptions.To de�ne RT we must take into account whetherthe processor is faulty and apply voting at the ap-propriate points. Because voting incorporates valuesfrom all the processors, the entire Repl state is re-quired as an argument to RT even though it onlyreturns the OS state for the kth processor.RT (c; r; k;�) = if �[k]then ?else (frame vote(r;�);Repl results(c; r; k;�))If processor k is faulty, we regard its entire OS stateas suspect and therefore assign it the value ?.RT requires the frame counter be voted on everytransition. All processor frame counters are input toa majority operation. Voting for a frame is based onvalues computed during that frame. Consequently,the incremented frame counter values are used in thespeci�cation.frame vote(r;�) = maj([Rl=1 FV l])where FV l = if �[l] then ? else r[l]:frame� 1

Because some of the r[l] may be faulty, we assumetheir frame counters are questionable and produce ?as their votes.For the results state variables, we need to incorpo-rate selective voting. The V P predicate determineswhen and where to vote.Repl results(c; r; k;�) =�i; j: if V P (i; j; r[k]:frame)then results vote(c; r; i; j;�)else new results(c[k]; r[k]; i; j)The function new results is de�ned in the unipro-cessor OS speci�cation. It gives the value of the taskresults part of the state after a state transition.De�ning the vote of task results is similar to thatfor the frame counter.results vote(c; r; i; j;�) = maj([Rl=1 RV l])where RV l =if �[l] then ? else new results(c[l]; r[l]; i; j):As before, some of the processors may be faulty sosome r[l] may have value ?. We assume task execu-tion on faulty processors produces ? as well.Note that voting within a frame occurs after allcomputation has taken place. In particular, thevoted value of a task's output is not immediatelyavailable to a later task within the same frame.6.4 Replicated Actuator OutputAs in the uniprocessor case, outputs from the repli-cated processors go to the actuators. Each processorsends its own actuator outputs separately. There-fore, we introduce a vectorized data type to describethe replicated system outputs.RAout = vector([1::R]) of AoutThus, if b is an RAout value, then b[k] refers to theactuator outputs for the kth processor.The actuator output variables are updated accord-ing to the application function AO in the same man-ner as the uniprocessor OS. We use the OS functionUA to extract the actuator outputs for each proces-sor in the replicated system.RA : Repl state � fault status ! RAoutRA(r;�) = [Rk=1 RAk]where RAk = if �[k] then ? else UA(r[k])RA produces a vector of actuator outputs, one foreach processor. Faulty processors are assumed toproduce indeterminate output (?).129

7 Replicated System ProofsWe develop a methodology for showing that the repli-cated OS is a correct implementation of the unipro-cessor OS. Previously presented concepts are puttogether with a framework for the replicated anduniprocessor state machines. Su�cient conditionsbased on commutative diagram techniques are de-rived for showing correctness. Issues stemming fromreal-time considerations are not included in the fol-lowing. In subsequent work we will address require-ments such as having adequate real time to executethe task schedule and OS overhead functions.7.1 Fault ModelIn each frame, a processor is either faulty or not. Afunction F : f1::Rg� nat! fT; Fgrepresents a possible fault history for a given set ofredundant processors. F(k; n) = T when processork is faulty in frame n, where n is the global frameindex (n 2 f0; 1; . . .g). Let fault fn be the typerepresenting the signature of F .Faults are often distinguished as being either per-manent or transient. A permanent fault would ap-pear in F as an entry that becomes true for a proces-sor k in frame n and remains true for all subsequentframes. A transient fault would appear as an entrythat becomes true for several frames and then returnsto false, indicating a return to nonfaulty status.Application task con�gurations and voting pat-terns determine the number of frames required torecover from a transient fault. Let NR represent thisnumber (NR > 0). We de�ne a processor as workingin frame n if it is nonfaulty in frame n and nonfaultyfor the previous NR frames. We use a functionW torepresent this concept.W : f1::Rg� nat� fault fn! fT; FgW(k; n;F) =(8j : 0 � j � min(n;NR) � � F(k; n� j))The number of working processors is also of interest:!(n;F) = jfk j W(k; n;F)gjA processor that is nonfaulty, but not yet working,is considered to be recovering.Finally, the key assumption upon which correctstate machine implementation rests is given below.De�nition 1 The Maximum Fault Assumption fora given fault function F is that !(n;F) > R=2 forevery frame n.

""6 6- ���3���3 6? - ASUR UR BCmaj maj majRAUAOSReplICFigure 4: Commutative diagram for UM andRM .Set Type DescriptionS Sin Uniprocessor sensor inputsA Aout Uniprocessor actuatoroutputsU OS state Uniprocessor OS statesC ICin Replicated sensor inputsB RAout Replicated actuator outputsR Repl state Replicated OS statesTable 1: Sets of inputs, outputs, and states.All theorems about state machine correctness arepredicated on this assumption that there is a ma-jority of working processors in each frame.7.2 Framework For State MachineCorrectnessMappings are needed to bridge the gap between thetwo state machines. Let us refer to the uniprocessorstate machine as UM and the replicated state ma-chine as RM . We map fromRM to UM by applyingthe majority function. We map from UM to RM bydistributing data objects R ways.For sensor inputs, we assume an interactive consis-tency process is used in the system, so the net e�ectis that sensor data is merely copied and distributed.IC : Sin ! ICin IC(s) = [Ri=1 s]The majority mapping on replicated states and actu-ator outputs captures the notion that a majority ofthe processors should be computing the right values.Relationships among the various entities for thetwo state machines are characterized by the commu-tative diagram in �gure 4. Table 1 summarizes thesets involved.Assume the inputs to UM are drawn from an in-�nite sequence of sensor values S = [s1; s2; . . .]. Fur-ther assume UM will have states [u0; u1; u2; . . .] and130

outputs [a1; a2; . . .]. Similarly, the inputs to RM aredrawn from the in�nite sequence C = [c1; c2; . . .],and RM will have states [r0; r1; r2; . . .] and outputs[b1; b2; . . .].De�nition 2 The state machines UM and RM arede�ned by initial states u0 and r0, and state transi-tions that obey the following relations for n > 0:un = OS(sn; un�1)an = UA(un)rn = Repl(cn; rn�1;FRn)bn = RA(rn;FRn)where FRn = [Rk=1 F(k; n� 1)]:Not shown in �gure 4 is the fault status vector argu-ment to the functions Repl and RA.7.3 The Correctness ConceptOur approach to the correctness criteria is basedon state machine concepts of behavioral equivalence,specialized for this application. In essence, what wewant to show is that the I/O behavior of RM is thesame as that of UM when interpreted by the map-ping functions IC andmaj. We say that the machineRM correctly implements UM i� they exhibit match-ing output sequences when applied to matching in-puts sequences and the Maximum Fault Assumptionholds.De�nition 3 RM correctly implements UM underassumption P i� the following formula holds:8F ; P(F) � 8S; 8n > 0 : an = maj(bn)where an and bn can be characterized as functions ofan initial state and all prior inputs.We parameterize the concept of necessary assump-tions using the predicate P. For the replicated sys-tem, it will be instantiated by the Maximum FaultAssumption:P(F) = (8m : !(m;F) > R=2):De�nition 3 provides the formal means of compar-ing the e�ects of the two machines and reasoningabout their collective, intertwined behavior. It fo-cuses on the correctness of the actuator outputs asa function of the sensor inputs; this is what mattersto the system under control.We now introduce the usual su�cient conditionsfor correctness based on commutative diagram tech-niques. The following criteria can be understood as

showing that two subdiagrams of �gure 4 commute:one for the state transition paths and another for theoutput function paths. Although the second subdi-agram is a nonstandard form for commutative dia-grams, since it does not depict a homomorphism, itis nevertheless useful for characterizing the relation-ship between the two machines' output values.De�nition 4 (RM Correctness Criteria) RMcorrectly implements UM if the following conditionshold:(1) u0 = maj(r0)(2) 8F ; (8m : !(m;F) > R=2) �8S; 8n > 0;OS(sn;maj(rn�1)) =maj(Repl(IC(sn); rn�1;FRn))(3) 8F ; (8m : !(m;F) > R=2) �8S; 8n > 0;UA(maj(rn)) = maj(RA(rn;FRn))The conditions of De�nition 4 are shown to implythe correctness notion of De�nition 3 in [1].8 Design ProofsProving replicated system correctness for a particu-lar voting pattern can be simpli�ed by �rst estab-lishing some intermediate su�cient conditions. Thefollowing treatment is based on the formulation ofa Consensus Property, which relates the state ofworking processors to the majority of the replicatedstates. We use this property to prove the RM Cor-rectness Criteria. This proof is independent of a par-ticular voting pattern; it need be done only once.Similarly, the Consensus Property can be establishedby introducing a Replicated State Invariant. Thenwe construct a proof of the invariant based on theFull Recovery Property, whose statement is generic,but whose proof is di�erent for each voting pattern.Adopting this methodology creates the followinggeneral proof structure.RM Correctness Criteria*Consensus Property*Replicated State Invariant*Full Recovery Property*Voting Pattern131

8.1 Consensus PropertyThe Consensus Property relates certain elements ofthe replicated OS state to the majority of those ele-ments. It asserts that if the pth processor is workingduring a frame, i.e., not faulty and not recovering,then its element of the replicated OS state equalsthat of the majority, both before and after the tran-sition. This re
ects our intuition that if a processoris to be considered productive, it must have estab-lished a state value that matches the consensus andwill continue to do so after the computations of thecurrent frame.De�nition 5 (Consensus Property) For F sat-isfying the Maximum Fault Assumption,W(p; n� 1;F) �rn�1[p] = maj(rn�1) ^ rn[p] = maj(rn)holds for all p and all n > 0.Having stated a generic Consensus Property, weassume its truth to prove the RM Correctness Cri-teria hold. See [1] for a detailed proof of the followingresult.Theorem 1 The RM Correctness Criteria followfrom the Consensus Property.8.2 Full Recovery PropertyWe introduce a predicate, rec, that captures theconcept of a state element having been recoveredthrough voting. It is a function of the last faultyframe, f , and the number of frames, h, a processorhas been nonfaulty.rec(i; j; f; h; e) =if h � 1 then Felse (V P (i; j; f � h) ^ e) _if i = f � hthen VjTI(i;j)jl=1 RI(TI(i; j)[l]; i; j; f; h)else rec(i; j; f; h� 1; T)RI(t; i; j; f; h) =(t:type = sensor) _if t:i = f � h ^ t:j < jthen rec(t:i; t:j; f; h; F)else rec(t:i; t:j; f; h� 1; T)By recursively following the inputs for the sched-uled task at cell (i; j), rec(i; j; f; h; e) is true i�results(i; j) should have been restored in frame f�h,provided the processor has been nonfaulty for hframes and f was the last faulty frame. The boolean

argument, e, indicates whether the recovery statusapplies at the end of the frame or sometime beforecomputation is complete. This is necessary to ac-count for the block voting that occurs at the end ofa frame.The conditions for rec can obtain if (i; j) is votedin frame f�h, or it is computed in frame f�h and allinputs have been recovered, or it is not computed inframe f �h and was recovered by frame f � (h� 1).Thus, cell (i; j) is not recovered if it results fromcomputations involving unrecovered data, or it hasnot been voted since the last faulty frame f .De�nition 6 (Full Recovery Property) Thepredicate rec(i; j; f;NR; T) holds for all i; j; f .This de�nition equates full recovery with the pred-icate rec becoming true for all state elements (i; j)after NR frames have passed since the last fault.8.3 Replicated State InvariantAs a practical matter, it is necessary to prove theConsensus Property by �rst establishing an invariantof the replicated OS state. Such an invariant relatesthe values of the nonfaulty processor states to themajority value of replicated OS states. To do so, itis necessary to identify the partially recovered valuesof OS states for recovering processors.Expressing the invariant below requires a means ofdetermining how many consecutive frames a proces-sor has been healthy (without fault). Let H(k; n;F)give the number of healthy frames for processor kprior to the nth frame. In an analogous way, letL(k; n;F) give the last faulty frame for processor kprior to the nth frame.The Replicated State Invariant states that if thepth processor is nonfaulty during a frame, i.e., work-ing or recovering, then its frame counter after thetransition equals that of the majority. It also relatesthis processor's results state values to the majorityif they have been recovered, as determined by thefunction rec.De�nition 7 (Replicated State Invariant)For fault function F satisfying the Maximum FaultAssumption, the following assertion is true for everyframe n:(n = 0 _ � F(p; n� 1)) �rn[p]:frame = maj(rn):frame = n modM ^(8i; j : rec(i; j;L(p; n;F);H(p; n;F); T)�rn[p]:results(i; j) = maj(rn):results(i; j)):Theorem 2 The Replicated State Invariant followsfrom the Full Recovery Property.132

Theorem 3 The Consensus Property follows fromthe Replicated State Invariant and the Full RecoveryProperty.Again, complete proofs of these theorems can befound in [1] along with de�nitions for H and L.9 Speci�c Voting PatternsWith the general framework established thus far, thereplicated system design is veri�ed on the premisethat the Full Recovery Property holds. This propertydepends on the details of each voting pattern andmust be established separately for each. Followingare three voting schemes and their proofs. The lastone is the most general and constitutes the goal ofthis work; the other two can be seen as special caseswhose proofs are simpler and instructive.9.1 Continuous VotingWe begin with the simplest case, namely when thevoting pattern calls for voting all the data on everyframe. Clearly, this leads to transient fault recov-ery in a single frame. Although the entire state ofa recovering processor is restored in one frame, ourformalization of rec assumes one frame is used to re-cover the frame counter, so the conservative assign-ment NR = 2 is used.De�nition 8 The continuous voting version of thereplicated OS uses the assignments V P (i; j; k) = Tfor all i; j; k, and NR = 2.Theorem 4 The continuous voting pattern satis�esthe Full Recovery Property.Proof. Since V P (i; j; k) holds for all i; j; k, andNR = 2, expanding the de�nition of rec shows thatrec(i; j; f;NR; T) reduces to T for all i; j; f .9.2 Cyclic VotingNext we consider a more sparse voting pattern,namely voting only the data computed in the cur-rent frame. Only the portion of r:results(i; j) wherei = r:frame is voted; the other M � 1 portions arevoted in later frames. This leads to voting each partof the results state exactly once per cycle and there-fore leads to transient fault recovery inM+1 frames.(One frame is required to recover the frame counter.)The proof in this case is only slightly more di�cult.

De�nition 9 The cyclic voting version of the repli-cated OS uses the assignments V P (i; j; k) = (i = k)for all i; j; k; and NR = M + 1.Theorem 5 The cyclic voting pattern satis�es theFull Recovery Property.Proof. Since V P (i; j; f � h) reduces to i = f � h,the de�nition of rec becomesrec(i; j; f; h; T) =if h � 1 then Felse i = f � h _ rec(i; j; f; h� 1; T):Thus, it follows thatrec(i; j; f;NR; T)= rec(i; j; f;M + 1; T)= (i = f � 2) _ . . ._ (i = f � (M + 1))Because the modulus of � is M this expression eval-uates to T .9.3 Minimal VotingThe last case is concerned with the most generalcharacterization of voting requirements. Minimalvoting is the name used to describe these require-ments because they represent conditions necessaryto recover from transient faults via the most sparsevoting possible.Central to the approach is the use of task I/Ographs, constructed from the application task speci-�cations embodied in the function TI. Nodes in thegraph denote cells in the task schedule and directededges correspond to the
ow of data from a producertask to a consumer task. Sensor inputs and actuatoroutputs have no edges in these graphs. Associatedwith edges of the graph are voting sites that indicatewhere task output data should be voted before beingsupplied as input to the receiving task.The essence of the Minimal Voting scheme is thatevery cycle2 of the task I/O graph should be coveredby at least one voting site. It is possible to placemore than one vote along a cycle or place votes alongnoncyclic paths, but they are unnecessary to recoverfrom transient faults. Such super
uous votes maybe desirable, however, to improve the transient faultrecovery rate.2We are using the graph theoretic concept of cycle here, asopposed to the terminology introduced earlier of a frame cycleconsisting of M contiguous frames in a schedule.133

De�nition 10 A task I/O graph G=(V,E) containsnodes vi 2 V that correspond to the cells (i; j)of a task schedule. Edges consist of ordered pairs(v1; v2) where ((i1; j1); (i2; j2)) 2 E i� output fromcell (i1; j1) is used as input to (i2; j2).De�nition 11 A path through the task I/O graphG = (V;E) consists of a sequence of nodes P =[v1; . . . ; vn] such that (vi; vi+1) 2 E. A cycle is apath C = [v1; . . . ; vn; v1]. The frame length of anedge e = ((i1; j1); (i2; j2)) is given by:fl(e) = � M if i1 = i2 ^ j1 � j2i2 	 i1 otherwiseThe frame length of a path, FL(P), is the sum of theframe lengths of its edges.De�nition 12 Let C1; . . . ; Cm be the (simple) cy-cles of graph G, and P1; . . . ; Pn be the noncyclic pathsof G. De�ne the following maximum frame lengthvalues for cycles and noncyclic paths:LC = max(fFL(Ci)g)LN = max(fFL(Pi)g) + 1Note that noncyclic paths may share edges with cy-cles in the graph, but may not contain a completecycle. LN is increased by one to account for theframe at the beginning of the path.De�nition 13 The minimal voting condition isspeci�ed by the following constraint on V P :8C 2 cycles(G) :9((a; b); (c; d)) 2 C; 9f :V P (a; b; f)^ (a = c ^ b � d_ 0 � f 	 a < c	 a)and the assignment NR = LC + LN +M .The condition requires at least one vote along eachcycle. There is a caveat, however, on where the votesmay be placed. Because voting occurs at the end of aframe, a vote site may not be speci�ed on an edge be-tween two cells of the same frame. Such placementsare ruled out by the condition above. The boundNR includes a worst case length to restore a stateelement, LC + LN , plus an additional M frames toaccount for maximum latency due to when the lastfault occurred within the schedule. Note that all cy-cles must have frame lengths that are multiples ofM .Figure 5 illustrates the de�nitions above for agraph embedded in a four frame schedule. The graphshown has one cycle with frame length four (LC = 4)and a single vote site. The voting pattern would be

���������������� QQQsQQQsQQQs- (3; 0)(2; 0)(1; 0)(0; 0) Vote 3210Figure 5: Example of task I/O graph.speci�ed by V P (1; 0; 2) = T to indicate that resultscell (1; 0) is voted in frame 2. The longest noncyclicpath has frame length three (LN = 4). Thus, thevoting pattern meets the Minimal Voting conditionand we assign it NR = 12.De�nition 14 A recovery tree is derived from theexpansion of the recursive function rec applied tospeci�c arguments. Nodes of the tree are associatedwith terms of the form rec(i; j; f; h; e). The tree isconstructed as follows. Associate the root with theoriginal term rec(i; j; f; h; e). At each node, expandthe rec function. If V P (i; j; f � h) ^ e is true, markthe node with a T . Otherwise, evaluate the condi-tional term of the rec de�nition. Create a child nodefor each recursive call associated with the appropri-ate term and repeat the process. If evaluation showsonly sensor inputs are used at a node, mark it witha T . If evaluation terminates with h � 1, mark thenode with an F . After building the tree out to all itsleaves, work back toward the root by marking eachparent node with the conjunction of its child nodemarkings.Thus, construction of the recovery tree for a termrec(i; j; f; h; e) corresponds to building a completerecursive expansion of the boolean term. The mark-ing at the root after the construction process is thevalue of the term.De�nition 15 The frame length of an edge (v1; v2)in a recovery tree, where v1 = (i1; j1; f1; h1; e1) andv2 = (i2; j2; f2; h2; e2), is given by jh2 � h1j 2 f0; 1g.The frame length of a path [v1; . . . ; vn] in the tree isthe sum of the frame lengths of the edges in the path,which is given by jhn � h1j.134

������������������������ TTTTrec(0; 0; 2; 2; T)
CFF CC rec(1; 0; 2; 3; T)rec(2; 0; 2; 4; T)
FFT rec(1; 0; 2; 2; T)rec(1; 0; 2; 1; T)Figure 6: Recovery tree for the termrec(2; 0; 2; 4; T).Figure 6 shows the recovery tree for termrec(2; 0; 2; 4; T) applied to the graph in �gure 5.Nodes labeled with a \C" are computation nodes,i.e., they correspond to state elements in frameswhere i = f�h. In this case, the four healthy framesare insu�cient to recover the value of cell (2; 0); eightframes are required.Lemma 1 If all leaves of a recovery tree are markedT , then the root must be marked T .Proof. Follows readily by induction on the heightof the tree.De�nition 16 Let GP (P) map a path P =[u1; . . . ; um] from a recovery tree into the analogouspath in the corresponding task I/O graph. Form P 0 =[v1; . . . ; vn] by retaining only those nodes from Parising from a computation frame (i = f �h). Thenlet GP (P) = [(i1; j1); . . . ; (in; jn)] where (ik; jk) istaken from the rec term of vk.Lemma 2 If a path P from a recovery tree be-gins and ends with a computation node, thenFL(GP (P)) = FL(P).Proof. Along the path P , between every pair ofcomputation nodes there will be fl(e) � 1 noncom-putation nodes one frame apart, where e is the edgein the task graph corresponding to this pair. Sum-ming them all makes FL(GP (P)) = FL(P).

Theorem 6 The minimal voting condition satis�esthe Full Recovery Property.Proof. To show rec(i; j; f;NR; T), construct the re-covery tree for this term. Consider each leaf node viand its path Pi to the root w. Let Pi be the con-catenation of three subpaths X;Y; Z, where Y is themaximal subpath beginning and ending with a com-putation node. Let u be the �rst node of Y and let Gdenote the task graph. By Lemma 2 it follows thatFL(GP (Y)) = FL(Y) and because the maximumframe separation between computation nodes is M ,FL(Z) < M .We show that all leaves are marked with T . Theonly way for a vi to be marked F is for FL(Pi) �NR � 1, causing vi's h � 1.Case 1. Pi maps to an acyclic path in G. SinceGP (Y) is acyclic FL(Y) = FL(GP (Y)) < LN .Moreover, NR = LC + LN +M so FL(Y Z) <NR � 1. In the worst case, u represents a taskwith sensor inputs only, X is empty and u = vi.Otherwise, Y is shorter than the worst caselength and FL(XY) < LN . In either case,FL(Pi) < NR � 1.Case 2. Pi covers part of a cyclic path in G. Picannot map to a complete cycle because it wouldcontain a vote site, terminating the recursion ofrec. The worst case is that X and part of Yfollow a partial cyclic path in G and the rest ofY is acyclic. Thus, we have FL(Pi) < LC +LN +M � 1 = NR � 1.By Lemma 1, it follows that the root is marked withT and therefore rec(i; j; f;NR; T) holds.The results presented above are conservative, be-ing based on a loose upper bound for NR. The actualNR for most graphs will be somewhat smaller. Theworst case for the graph of �gure 5 is actually 10frames versus the estimated value of NR = 12. Inaddition, for more dense and highly regular votingpatterns such as Continuous Voting and Cyclic Vot-ing, we can obtain more accurate values and it wouldbe inadvisable to apply the Minimal Voting boundto these cases.An important consequence of the Minimal Votingresult is that if a graph has no cycles, then no vot-ing is required! In this case the recovery time boundwould be given exactly by NR = LN +M . Althoughsuch a task graph is untypical for real control sys-tems, there may be applications that could be basedon this kind of design.135

10 SummaryWe have presented a method for specifying and ver-ifying architectures for fault-tolerant, real-time con-trol systems. The paper develops a uniprocessor top-level speci�cation that models the system as a single(ultra-reliable) processor and a second-level speci�-cation that models the system in terms of redundantcomputational units. The paper then develops anapproach to proving that the second-level speci�ca-tion is an implementation of the top-level. We haveexplored di�erent strategies for voting and presenteda correctness proof for three voting strategies. TheMinimalVoting results o�er real promise for buildingfault-tolerant systems with low voting overhead.AcknowledgementsComments received from John Rushby, Paul Miner,and Chuck Meissner during the course of this workare gratefully acknowledged.References[1] Ben L. Di Vito, Ricky W. Butler, and James L.Caldwell. Formal design and veri�cation of a re-liable computing platform for real-time control.Technical Memorandum 102716, NASA, Octo-ber 1990.[2] Jack Goldberg et al. Development and analy-sis of the software implemented fault-tolerance(SIFT) computer. Contractor Report 172146,NASA, 1984.[3] Albert L. Hopkins, Jr., T. Basil Smith, III, andJaynarayan H. Lala. FTMP | A highly re-liable fault-tolerant multiprocessor for aircraft.Proceedings of the IEEE, 66(10):1221{1239, Oc-tober 1978.[4] Hermann Kopetz et al. Distributed fault-tolerant real-time systems: The Mars approach.IEEE Micro, 9(1):25{40, February 1989.[5] J. H. Lala, L. S. Alger, R. J. Gauthier, andM. J. Dzwonczyk. A Fault-Tolerant Processorto meet rigorous failure requirements. Techni-cal Report CSDL-P-2705, Charles Stark DraperLab., Inc., July 1986.[6] Leslie Lamport and P. M. Melliar-Smith. Syn-chronizing clocks in the presence of faults. Jour-nal of the ACM, 32(1):52{78, January 1987.

[7] Leslie Lamport, Robert Shostak, and MarshallPease. The Byzantine Generals problem. ACMTransactions on Programming Languages andSystems, 4(3):382{401, July 1982.[8] Luigi V. Mancini and Giuseppe Pappalardo. To-wards a theory of replicated processing. In Lec-ture Notes in Computer Science, volume 331.Springer Verlag, 1988.[9] Louise E. Moser and P. M. Melliar-Smith.Formal veri�cation of safety-critical systems.Software{Practice and Experience, 20(8):799{821, August 1990.[10] Peer review of a formal veri�cation/design proofmethodology. Conference Publication 2377,NASA, July 1983.[11] John Rushby and Friedrick von Henke. Formalveri�cation of a fault tolerant clock synchroniza-tion algorithm. Contractor Report 4239, NASA,June 1989.[12] C. J. Walter, R. M. Kieckhafer, and A. M.Finn. MAFT: A multicomputer architecture forfault-tolerance in real-time control systems. InIEEE Real-Time Systems Symposium, Decem-ber 1985.

136

